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Abstract.- Classical one-parameter harvest policies (such as those based on maintaining a constant optimal catch, constant optimal
fishing mortality rate, or constant optimal escapement) and full optimal control solutions (such as those generated through stochas-
tic dynamic programming) represent two ends of a spectrum of possible harvest control rules.  The classical one-parameter policies
have little flexibility and may be substantially sub-optimal, but are easy to describe.  True optimal control policies, on the other
hand, are completely flexible and fully optimal, but they can be inaccessible.  As a compromise between the classical one-parameter
policies and a full optimal control solution, several authors have suggested that fisheries be managed by specifying the functional
form of a control rule a priori and then choosing values for one or more of the parameters so as to maximize a management objective
function.  The purpose of this paper is to gain an increased understanding of how such harvest control rules can be used to address
the problem of optimal fishery management.  This is undertaken in three stages, proceeding in order of increasing complexity.  In
Stage 1, the analysis assumes that population dynamics are completely deterministic and that the values of all biological parameters
are known with certainty.  Here, the focus of optimization is on maximum sustainable yield (MSY).  In Stage 2, the analysis is
generalized to the case in which natural (stochastic) variability is present but the values of all biological parameters are still known
with certainty.  Here, the focus of optimization is on a stochastic analogue of MSY, with attention paid also to tradeoffs between
long-term average yield and the level of variability around that average.  In Stage 3, the analysis is further generalized to the case in
which natural variability is present and the values of biological parameters are uncertain.  Here, the focus of optimization is on
decision-theoretic analogues of MSY, with attention paid to the various features desired under a precautionary approach.  At each
stage of development, a general treatment of the problem is attempted, followed by a specific example.  Some implications of
alternative control rules with respect to the special problem of rebuilding a depleted stock are also given for the first two stages.

Introduction

Background

Development of the Theory

Design of optimal harvest strategies has been a
major emphasis of fisheries science throughout most of
this century.  Early on (e.g., Russell 1931, Hjort et al.
1933), efforts focused on identification of a “constant
catch” policy; that is, a single, time-invariant catch which
could be taken year after year.  Soon, though, investiga-
tors (e.g., Thompson and Bell 1934, Graham 1935) be-
gan focusing on identification of a “constant fishing
mortality” policy; that is, a single, time-invariant fish-
ing mortality rate which could be applied year after year.
Some twenty years later, Ricker (1958) focused on use
of a “constant escapement” policy; that is, a single, time-
invariant escapement which would remain in the stock
following each year’s harvest.  Each of these strategies
was developed in the hope of obtaining the maximum
sustainable yield (MSY) from the fishery, although the
definitions of this term have sometimes been unclear or
inconsistent.  Since these early investigations, many stud-
ies have compared the policies of constant catch, con-
stant fishing mortality, and constant escapement.  One
of the earliest and most thorough comparative evalua-
tions of these three policies was conducted by Reed

(1978).  Other comparisons of two or more of these poli-
cies have been made by Tautz et al. (1969), Gatto and
Rinaldi (1976), Beddington and May (1977), May et al.
(1978), Hilborn (1979), Deriso (1985), Hilborn and
Walters (1992), Frederick and Peterman (1995), and
Steinshamn (1998).

Although the focus of each of the above policies is
distinct from the others, they share the characteristic that
each distills the optimal harvest problem into a single
(albeit different) parameter.  More complicated policies
have also been explored.  At about the same time that
Ricker was considering the merits of a constant escape-
ment policy, Scott (1955) noted that a truly optimal
management strategy would not necessarily be describ-
able in terms of a single parameter.  Rather, Scott ar-
gued that the optimal harvest should be conceptualized
as an entire time series of future catches, each of which
is chosen in the context of all the others so that the over-
all benefits from the fishery are maximized.  It was not
until the 1970s, however, that formal analyses of such a
policy were successfully undertaken.  These analyses
typically involved application of the Pontryagin maxi-
mum principle (Pontryagin et al. 1962).  Such treatments
include those given by Quirk and Smith (1970), Plourde
(1970, 1971), and Cliff and Vincent (1973), but Clark’s
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(1973, 1976) solution of the simple, deterministic model
attributed to Gordon (1954) and Schaefer (1954) is prob-
ably the best remembered of this group of studies.  Some-
what ironically, it turned out that the strategy which re-
sulted in full optimization of the Gordon-Schaefer model
was simply a particular type of constant escapement
policy.

While Clark’s (1973, 1976) use of the Pontryagin
maximum principle in solving simple fishery models
was instrumental in bringing an “optimal control” per-
spective to the design of harvest strategies, application
of the maximum principle to more complicated models
involving natural variability or parameter uncertainty
has not been particularly successful (for an exception,
see Gleit 1978).  Instead, other techniques such as sto-
chastic dynamic programming have been employed to
identify optimal control strategies.  Examples are given
by Reed (1974, 1979), Walters (1975), Hilborn (1976),
Getz (1979), Dudley and Waugh (1980), Mendelssohn
(1980, 1982), Charles (1983), Mangel (1985), Hightower
and Grossman (1987), Horwood et al. (1990), and
Horwood (1991, 1993).

Unfortunately, full optimal control solutions are at
best computationally intensive, and at worst completely
opaque.  Describing such solutions, Horwood (1993, p.
341) states,

“For deterministic problems they are costly in
time, but more importantly do not allow the
construction of a general management control.
The stochastic laws cannot be derived.”

The classical one-parameter policies and the full
optimal control solutions thus represent two ends of a
spectrum of possible harvest control rules (“feedback
control laws” in the terminology of Clark 1976):  The
classical one-parameter policies have little flexibility and
may be substantially sub-optimal, but they are easy to
describe.  True optimal control policies, on the other
hand, are completely flexible and fully optimal, but they
can be inaccessible.  As a compromise between the clas-
sical one-parameter policies and a full optimal control
solution, several authors have suggested that fisheries
be managed by specifying the functional form of a con-
trol rule a priori and then choosing values for one or
more of the parameters so as to maximize a manage-
ment objective function.  Walters and Hilborn (1978)
called this approach “fixed form optimization,” and de-
scribed it as follows (p. 167):

“There are two basic steps in the development
of a fixed-form optimization.  The first is to
find an algebraic form of the control function.
Intuition, common sense, etc. can often be used
to guess at a reasonable form....  The second

step in fixed-form optimization is to find the
optimal values of the control parameters.”

Larkin and Ricker (1964) were among the first to
suggest such an approach.  Specifically, their sugges-
tion was to prohibit fishing whenever escapement failed
to reach a specified level but to allow fishing at a con-
stant rate whenever escapement exceeded the specified
level.  This 2-parameter policy has also been explored
by Aron (1979), Quinn et al. (1990), and Zheng et al.
(1993).  Other multi-parameter forms for possible con-
trol rules were subsequently suggested or evaluated by
Allen (1973), Walters and Hilborn (1978), Shepherd
(1981), Ruppert et al. (1984, 1985), Hilborn (1985), Getz
et al. (1987), Hightower and Lenarz (1989), Hightower
(1990), and Engen et al. (1997).

Implementation of the Theory

As is often the case when moving from “theory” to
“application” in fisheries management, it has proven
easier to evaluate harvest control rules in the literature
than to implement them in practice.  However, signifi-
cant progress has been made in the past decade.  In the
United States, a 2-parameter control rule (based on the
functional form suggested by Shepherd 1981) was
adopted for management of groundfish off Alaska in
1990.  In an official review of overfishing definitions
used in the United States, Rosenberg et al. (1994) rec-
ommended that a control rule approach be used “when-
ever it is practical,” and suggested a possible functional
form.  Based in part on this suggestion, the Alaska
groundfish control rule was later modified to a 3-pa-
rameter form (U.S. National Marine Fisheries Service
1996).  More recently, the Northwest Atlantic Fishery
Organization (Serchuk et al. 1997) and the International
Council for the Exploration of the Sea (1997) have ex-
plored the use of harvest control rules.  Finally, the U.S.
Government issued a set of “National Standard Guide-
lines” in 1998 which assigned a fundamental role to
harvest control rules (U.S. Department of Commerce,
1998).

Harvest Control Rules and the Precautionary Ap-
proach

Much of the current interest in harvest control rules
stems from a perception that they can play an important
role in implementing a “precautionary approach” to fish-
eries management.  At the international level, calls for
adoption of such an approach have been featured in sev-
eral agreements developed under the auspices of the
United Nations, including the Code of Conduct for Re-
sponsible Fisheries prepared by the United Nations Food
and Agriculture Organization (FAO), the FAO Techni-
cal Consultation on the Precautionary Approach to Cap-
ture Fisheries, the Rio Declaration of the United Na-
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tions Conference on Environment and Development, and
the United Nations Convention on the Law of the Sea
Relating to the Conservation and Management of Strad-
dling Stocks and Highly Migratory Fish Stocks (the
“Straddling Stocks Agreement”).  For example, Annex
II of the Straddling Stocks Agreement (United Nations
1995) includes the following provisions:

“Two types of precautionary reference points
should be used:  conservation, or limit, refer-
ence points and management, or target, refer-
ence points”;

“fishery management strategies shall ensure
that the risk of exceeding limit reference points
is very low”; and

“the fishing mortality rate which generates
maximum sustainable yield should be regarded
as a minimum standard for limit reference
points.”

In the U.S., the National Standard Guidelines (U.S.
Department of Commerce 1998) also encourage the use
of a precautionary approach with the following features:

“Target reference points ... should be set safely
below limit reference points...”;

“a stock ... that is below the size that would
produce MSY should be harvested at a lower
rate or level of fishing mortality than if the stock
... were above the size that would produce
MSY”; and

“criteria used to set target catch levels should
be explicitly risk averse, so that greater uncer-
tainty regarding the status or productive capac-
ity of a stock or stock complex corresponds to
greater caution in setting target catch levels.”

A more detailed description of the historical devel-
opment of the precautionary approach has been given
by Thompson and Mace (1997).

Purpose and Outline

The purpose of this paper is to gain an increased
understanding of how harvest control rules can be used
to address the problem of optimal fishery management.
This will be undertaken in three stages, proceeding in
order of increasing complexity.  In Stage 1, the analysis
will assume that population dynamics are completely
deterministic and that the values of all biological pa-
rameters are known with certainty.  Here, the focus of
optimization will be on MSY.  In Stage 2, the analysis
will be generalized to the case in which natural (sto-

chastic) variability is present but the values of all bio-
logical parameters are still known with certainty.  Here,
the focus of optimization will be on a stochastic ana-
logue of MSY, with attention paid also to tradeoffs be-
tween long-term average yield and the level of variabil-
ity around that average.  In Stage 3, the analysis will be
further generalized to the case in which natural vari-
ability is present and the values of biological param-
eters are uncertain.  Here, the focus of optimization will
be on decision-theoretic analogues of MSY, with atten-
tion paid to the various features desired under a precau-
tionary approach (U.S. Department of Commerce 1998).
At each stage of development, a general treatment of
the problem will be attempted, followed by a specific
example.  Some implications of alternative control rules
with respect to the special problem of rebuilding a de-
pleted stock will also be given for the first two stages.

The outline of the remainder of the paper is thus as
follows:

Stage 1:  Determinism Under Known Parameter Values
Dynamics
Solution
Rebuilding
Optimization

Stage 2:  Incorporating Natural Variability
Dynamics
Solution
Rebuilding
Optimization

Stage 3:  Incorporating Parameter Uncertainty
Discussion

Table 1 lists the symbols used in the remainder of
the paper.  A definitional change regarding one param-
eter will prove helpful in moving from Stage 2 to Stage
3.  This is addressed in the text.

Stage 1:  Determinism Under Known Parameter
Values

Dynamics

In General

In the absence of both natural variability (“process
error”) and fishing, let the dynamics of stock size x be
modeled in continuous time t as the ordinary differen-
tial equation

  xf
t

x
)|(  = 

 d

 d χ , (1)

where f is a function and χχχχχ is a parameter vector of length
m.
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Next, consider a function which uses a parameter
vector ωωωωω  to map stock size x into an instantaneous har-
vest (fishing) mortality rate h.  Such a function consti-
tutes a “harvest control rule.”  The purpose of a harvest
control rule is to associate a reference fishing mortality
rate (either a target or a limit) with each possible stock
size.  For any harvest control rule, yield y at time t will
be the product of x at time t and h, where h itself is a
function of x.  The time derivative of stock size then
becomes

 x )|h(x   -  ) xf
t

x ωχ|(  = 
 d

 d
. (2)

For Example

When fishing is absent, the Gompertz (1825) bio-
mass dynamic model can be viewed as an example of
Equation (1), with χχχχχ=(a,b)T:

  ln    -  1   = 
 d

 d













b

x
x a

t

x
, (3)

where a is a growth rate and b is a scale parameter.

The simplest case of a harvest control rule occurs
when ωωωωω  is a scalar c and h is a constant (i.e., c  =  (x) h ).
When this control rule is assumed, the Gompertz model
becomes the Gompertz-Fox model (Fox 1970):

x c
b

x
x a

t

x
 -  ln    -  1   = 

 d

 d











 .

More complicated rules can be imagined as the di-
mension of ωωωωω increases.  For example, if ωωωωω consists of a
pair of control parameters c and d, some possible har-
vest control rules include the hyperbolic form h(x) = c -
d/x, the square-root form  x d  +  c  =  h(x) , the linear
form x d  +  c  =  h(x) , and the logarithmic form

(x) d  +  c  =  h(x) ln .   In any of these examples, setting
d=0 gives the one-parameter control rule c  =  h(x) .  The
hyperbolic form was considered (after translating to
(x,y)-space; that is, d  -  x c  =  y(x) ) by Hilborn (1985),
Hightower and Lenarz (1989), and Engen et al. (1997).
In addition, it conforms to a special case of the three-
parameter control rule considered by Ruppert et al.
(1984, 1985) and Hightower and Lenarz (1989).  (The
square-root and linear forms, both with c=0, also corre-
spond to special cases of this three-parameter control
rule.)  The linear form was considered by Hightower
(1990).  If the underlying stock dynamics are governed
by a model of the form suggested by Graham (1935)
and Schaefer (1954), a linear control rule would be a
natural choice in that such a control rule would not
change the stock dynamics in any qualitative way.  Given
stock dynamics of the form suggested by Gompertz
(1825), however, the logarithmic form is the natural
choice, as shown below.  Assuming Gompertz dynam-

Table 1.- Symbols used in this paper.

Variables Means of a Random Variable
t time A arithmetic mean
x stock size G geometric mean
y yield H harmonic mean

Elementary Parameters Parameters of Statistical Distributions
a Gompertz growth parameter α first beta shape parameter
b Gompertz scale parameter β second beta shape parameter
c control rule intercept parameter η inverse Gaussian scale parameter
d control rule slope parameter θ inverse Gaussian shape parameter
s process error scale parameter µ ln(lognormal scale parameter)
z objective function weight parameter σ lognormal shape parameter

Functions of Stock Size Only Parameter Vectors
f function describing deterministic dynamics χχχχχ vector of parameters used in f
g function describing process error scale ψψψψψ vector of parameters used in g
h function describing harvest control rule  ωωωωω vector of parameters used in h

Functions of Stock Size or Other Variables Constants
p probability density function e Napier’s constant (2.7183...)
q objective function m dimension of χχχχχ
r normalized process error function n dimension of ψψψψψ

Composite Parameters Functions of Means
u ratio of a to a+d k

a
function of H

a 
/A

a
 and w

v ratio of s2 to 2a k
b

function of H
b 
/A

b
 and A

u

w ratio of d to a (Stage 2) or d to A
a
 (Stage 3) k

v
function of H

v 
/A

v
, A

u
, and A

v
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ics and a logarithmic control rule, the time derivative of
stock size becomes

( )

  )ln(   -  
  +  

  -  ))ln(  +(1 
  )   +  ( =    

 

  )ln(   +    -  ln    -  1   =    

 

 )( -  ln    -  1   = 
 d

 d
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xda

xxdc
b

x
x a

xxh
b

x
x a

t

x

    (4)

Comparing the above with Equation (3) shows that
use of a logarithmic control rule does not alter the un-
derlying stock dynamics in any qualitative way.  The
Gompertz-Fox model corresponds to the special case of
the above in which d=0.  Examples of logarithmic con-
trol rules are shown in Figure 1.

Solution

In General

The time trajectory of stock size will generally be

of the form  t ,x  ,  ,x )( 0ωχ , where x
0
 represents an initial

condition and t is measured with respect to an initial
time t

0
=0.  In the limit as t approaches infinity, the tra-

jectory will converge to the equilibrium value    ,x )(* ωχ ,
assuming such an equilibrium exists.

For Example

The equilibrium stock size implied by Equation (4)
is given by

e =  d  ,c  ,b  ,ax
d   +  a

c   -  b   + a ))(ln(1

)(*

and the time trajectory is given by

 
 d  ,c  ,b  ,ax

x
  d  ,c  ,b  ,ax

= t  ,x  ,d  ,c  ,b  ,ax

e t  d   +  a -







)(

)(

)(

*
0*

0

)(

.            (5)

For the special case c=d=0 (i.e., no fishing), the
equilibrium stock size is simply be.

Figure 1.  Example control rules.  In each of the upper panels, the slope of the control rule increases directly
with d.  In each of the bottom panels, the height of the control rule increases directly with c.
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Rebuilding

In General

In practice, fish stocks are often observed to be at
levels of abundance well below those considered to be
optimal, or even safe.  In such situations, fisheries sci-
entists are frequently asked to estimate how much time
will elapse before the stock rebuilds to some reference
level, contingent upon implementation of a specified
harvest policy in the interim.  More proactively, the “re-
building” question may be phrased this way:  How low
can a stock’s level of abundance fall and still rebuild to
a size x

reb
 within a time period t

reb
 under a specified har-

vest policy?  This is not the only issue which a rebuild-
ing plan might logically address (e.g., Powers 1996),
but it is a central one (e.g., as implied by U.S. Depart-
ment of Commerce 1998).  The answer is obtained by
solving the equation rebrebthr x  =  tx  ,  ,x ),( ωχ  for the
“threshold” stock size x

thr
.

For Example

Setting Equation (5) equal to x
reb

, setting t=t
reb

, and
solving for x

0
 (relabeled x

thr
) gives

 
) d  ,c  ,b  ,(ax

x
  d  ,c  ,b  ,ax = x reb

thr

e treb d   +  a







*

*

)(

)( .

In the special case where x
reb

=b, the above simpli-
fies to

      -  e  
d   +  a

b  d   -  c   -  a
 -   b = x

treb d  +  a
thr 
















 1

)(ln
exp

)(

(6)

Examples of logarithmic harvest control rules and
their corresponding stock size thresholds for parameter
values a=0.2, b=10, x

reb
=10, and t

reb
=10 are shown in

Figure 2.  In each of Figure 2’s four panels, the upper-
most control rule passes through the point (b,a), indi-
cated by the intersection of the horizontal dotted line
and the rightmost vertical dotted line.  Whenever x

reb
=b,

any harvest control rule passing through the point (b,a),
meaning any control rule in which h(b)=a, will always
have a threshold stock size equal to b.  Furthermore,
control rules in which h(b)<a will always have a thresh-
old stock size less than b in such cases (i.e., whenever
x

reb
=b).

Figure 2.  Example control rules (solid curves) and associated thresholds (vertical dotted lines).  In each panel,
as c decreases, the control rule moves down and the threshold moves left.
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Optimization

In General

Sustainable (equilibrium) yield can be viewed as a
function of the parameter vectors χχχχχ and ωωωωω.  To keep
things relatively simple throughout the remainder of the
paper, let the control parameter c correspond to the ith
element of ωωωωω and let ωωωωω( i )

 denote the vector ωωωωω  with the
ith element (i.e., c) removed, and let sustainable yield
be written ) , ( )  (ωχ i

*  | cy  to emphasize the dependence of
sustainable yield on c.  Then, MSY is achieved condi-
tionally on χχχχχ and ωωωωω( i )

 by finding the value ) , (
)  (MSY

ωχ
i

 c
such that the following equation is satisfied:

 0 = |  
 d

) ,  | ( d
) , (   = )  (MSY  

) (
*

ωχ
ωχ

i

i 

ccc

cy
.

For Example

The sustainable yield corresponding to Equation (4)
is given by substituting )  ,  ,  , (* dcbax   into the loga-
rithmic control rule, giving

( )



















  

d  +  a

c  - b   +  a
  

d  +  a

c  - b   +  a
  d + c =        

 

 d  ,c  ,b  ,ax    d  ,c  ,b  ,(ax d + c =  d  ,b  ,a | cy

))(ln(1
exp

))(ln(1

)())(ln)( ***

.

Given a value of either of the control parameters c
and d, it is possible to solve for the value of the other so
that sustainable yield is maximized.  For example, if the
solution is conditioned on control parameter d, MSY is
obtained by setting

)(ln)(
MSY

b  d   -  a =  d  ,b  ,a c .

Thus, an “MSY control rule” for this model is any
rule of the form

)(ln)()( MSY x d  +   d  ,b  ,a c =  d  ,b  ,a|xh

(cf. U.S. Department of Commerce 1998).  In Figure 2,
for example, the uppermost curve in each panel is an
MSY control rule.  The Gompertz-Fox model corre-
sponds to the special case where d=0, giving

a  =    ,b  ,a c 0)(MSY . Changing the value of d allows the
MSY control rule to be viewed as a continuum extend-
ing from a constant fishing mortality policy at one end
(d=0) to a constant escapement policy at the other end
(in the limit as d approaches infinity).

For any MSY control rule of the above form, equi-
librium stock size is equal to b.  MSY itself is equal to
the product ab, and is thus independent of d.

Stage 2:  Incorporating Natural Variability

Dynamics

In General

Equation (2) can be generalized to a stochastic dif-
ferential equation incorporating random natural variabil-
ity as follows:

  )|(   -  )( )|(   +  )|(  = 
 d

 d
xxhtrxgxf

t

x ωψχ ,   (7)

where r(t) is a standard white noise process and g is a
function of x, with parameter vector ψψψψψ of length n, that
scales the intensity of the noise.  It should be noted that
the interpretation of stochastic differential equations
given by Stratonovich (1963) is used here (e.g., Ricciardi
1977).

For Example

Natural variability can be added to the determinis-
tic Gompertz model with a logarithmic harvest control

rule by setting  ψψψψψ=s, sx|xg =) ( ψ and recasting the time
derivative as a stochastic differential equation of the form

( )x  x d   +  c    -  tr x    s+  
b

x
    -   x a = 

t 

x 
)ln()(ln1

d

d











 . (8)

Solution

In General

Broadly speaking, stock size at time t could poten-
tially range anywhere from zero to arbitrarily large,
though some stock sizes are more probable than others.
Given an initial condition x

0
, this fact can be modeled as

a pdf with parameter vector (χχχχχT, ψψψψψT, ωωωωωT, x
0
, t)T.  More

precisely, the probability that stock size falls between x
1

and x
2
 at time t may be written in terms of the “transi-

tion distribution” )( 0 t  ,x  ,  ,  , | xpx ωψχ  as follows:

x  t  ,x  ,  ,  , | xp   = x   tx   xPr x
x
x  d)())(( 0
2
121 ωψχ∫≤≤ .

In the limit as t approaches infinity, p
x
 (if it still

exists) describes the “stationary distribution” of x.  The
stationary distribution can be written )(* ωψχ   ,  , | xpx .

For Example

Using a different parametrization, the solution to
Equation (8) was considered for the special case c=d=0
(i.e., no harvesting) by Capocelli and Ricciardi (1974).
The less restricted case d=0 (with c arbitrary) was con-
sidered by Thompson (1998).  When no restrictions are
placed on either c or d, the stationary distribution of
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stock size is lognormal, specifically,

  
d  , s ,a

d c,  ,b  ,a   -  x
 -

  
x d  , s ,a
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( ))(ln
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d + a
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Similarly, the transition distribution of stock size at
time t is also lognormal, specifically,
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t d  + a- )(1)( *)2( σσ .

Rebuilding

In General

In the presence of natural variability, discussion of
rebuilding trajectories can become much more compli-
cated than in the deterministic case.  Because an infinite
number of rebuilding trajectories is possible in the sto-
chastic case, rebuilding is typically described using some
sort of summary statistic.  For example, the following
equation could be solved for x

thr
 after substituting some

desired probability of successful rebuilding (e.g., 50%)
for the left-hand side:

xtx | xp  =    tx  x rebthrxrebrebreb x
d )  ,  ,  ,  , ())((Pr ωψχ∫∞≤≤ ∞

.

Alternatively, the solution could be expressed in
terms of expected values of x (or some transformation
thereof) at time t=t

reb 
, for example, by equating x

reb
 with

the arithmetic mean or geometric mean of x at time t=t
reb

.

For Example

Unlike the general case, a fortunate property of the
model used here is that consideration of rebuilding
schedules in the presence of natural variability need not
be any more complicated than in the deterministic situ-
ation described in Stage 1, depending on the choice of
summary statistic.  Because the geometric mean of the
transition distribution [Equation (9)] is identical to the
deterministic solution of the time trajectory [Equation
(5)], and because the lognormal form of the transition
distribution implies that the geometric mean is equal to
the median, using either the geometric mean or a 50%
probability of exceeding x

reb
 to compute the threshold

stock size x
thr

 gives the same result as in the determinis-
tic case [Equation (6)].

Optimization

In General

The conditional arithmetic mean of the stationary
distribution of yield is defined as

xxpxyA *
xy d ) ,  ,  | ( ) | (    = ) ,  , ( 0 ωψχωωψχ ∫

∞ .

The dependence of the conditional arithmetic mean
on a particular control parameter can be emphasized by
rewriting ) ,  , ( ωψχyA  as ) ,  , ( )(iy  | cA ωψχ , following
the Stage 1 convention in which control parameter c
corresponds to the ith element of  ωωωωω.  Then, this quantity
can be maximized with respect to control parameter c
by differentiating, setting the resulting expression equal
to zero, and solving with respect to c.  Maximizing

),  , ( )(iy  | cA ωψχ  with respect to c gives the control pa-
rameter value associated with maximum expected sta-
tionary yield (MESY):

0 = |  
 d

) ,  ,  | ( d
) ,  , ( ~  = )(MESY

 
)(

iccc

cA iy
ωψχ

ωψχ
,

where use of the “~” symbol is intended to denote that
the maximization is conducted with respect to the con-
ditional mean (alternative maximizations will be de-
scribed later).

Much of the literature concerning optimal harvest
strategies in the presence of natural variability deals with
tradeoffs between the magnitude of yield on average
and the variability about that average.  In the context of
comparisons between the classical one-parameter har-
vest policies, such tradeoffs have been considered by
Ricker (1958), Larkin and Ricker (1964), Gatto and
Rinaldi (1976), Beddington and May (1977), May et al.
(1978), Reed (1978), Hilborn (1979), Hilborn and
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Walters (1992), Frederick and Peterman (1997), and
Steinshamn (1998).  In the context of optimal control
policies, they have been considered by Walters (1975),
Mendelssohn (1980), and Horwood et al. (1990).  In the
context of fixed-form control rules, they have been con-
sidered by Allen (1973), Aron (1979), Hilborn (1985),
Ruppert et al. (1985), Getz et al. (1987), Hightower and
Lenarz (1989), Hightower (1990), Quinn et al. (1990),
Zheng et al. (1993), and Engen et al. (1997).

One way to characterize the variability of yield on
a scale equivalent to that of the arithmetic mean is by
the standard deviation.  If c is set equal to

, ) ,  , (~
)  (MESY ωψχ ic both the arithmetic mean and standard

deviation of the stationary distribution of y will be func-
tions of χχχχχ, ψψψψψ, and ωωωωω( i )

, meaning that tradeoffs between
the arithmetic mean and standard deviation can be
viewed as a function of the control parameter sub-vec-
tor ωωωωω( i )

 for given values of χχχχχ and ψψψψψ.

For Example

By defining a natural variability level

a 
s =   ,s ,a  v  

x 2
)0(

2
2*σ≡

(i.e., by defining v as the variance of the stationary dis-
tribution of log stock size when d=0), the equations for
many quantities of interest in the example model can be
simplified considerably.  Thus, wherever s appears as a
parameter in a particular equation, it can be replaced
with the quantity 2av, and whenever s appears as a
function argument in a particular equation, it can be re-
placed with the parameter v.  Similarly, by defining a
scaled control parameter

a

d
  w≡

(i.e., by viewing the control parameter d relative to a
rather than in absolute terms) and reparametrizing ac-
cordingly, it turns out that a appears only as a constant
of proportionality in many (but not all) quantities of in-
terest in this model.  Thus, wherever d appears as a pa-
rameter in a particular equation, it can be replaced with
the quantity wa, and wherever d appears as a function
argument in a particular equation, it can be replaced with
the parameter w.

With these composite parameters, the conditional
arithmetic mean of the stationary distribution of stock
size x can be written as
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and the conditional arithmetic mean of the stationary
distribution of yield y can be written as
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Given w, the value of c that maximizes expected
stationary yield is

( )a  wv + b -  = w ,v  ,b  ,a c ))(ln(1 )(~
MESY .           (11)

Note that )(~
MESY  w ,v  ,b  ,a c  approaches

)(MSY  w ,b  ,a c  as v approaches zero.  Also, in the special
case where w=0, the solution simplifies to

a =   ,b  ,ac =   ,v  ,b  ,ac 0)(0)(~
MSYMESY  regardless of the

value of v.  Generally, then, the stochastic equivalent of
an MSY control rule (without considering parameter
uncertainty) is given by the MESY control rule

)(ln)(~)(
~

MESYMESY x  wa+  w ,v  ,b  ,a c =  w ,v  ,b  ,a | x h .

Examples of MESY control rules are shown in Fig-
ure 3.  As shown previously in Figure 2, if the rebuild-
ing level is set equal to b, an MSY control rule (i.e., a
MESY control rule with v=0) always has a threshold
stock size equal to b.  As shown in Figure 3, however, a
MESY control rule with v>0 will always have a thresh-
old stock size less than b except in the special case where
w=0.  The distance between the threshold stock size and
b increases monotonically with both w (seen by com-
paring curves within a particular panel of Figure 3) and
v (seen by comparing curves between panels of Figure
3).  The direct relationship between the difference b-x

thr

and w is consistent with the fact that higher values of w
imply greater cutbacks in the harvest rate as stock size
falls, meaning that acceptable rates of recovery can be
achieved from lower stock sizes.  The direct relation-
ship between the difference b-x

thr
 and v is consistent with

the fact that natural variability is the factor that enables
b to diverge from x

thr
 in the first place (i.e., in the Stage

1 case, a stock harvested under an MSY control rule
will never recover to x=b in finite time).

When the right-hand side of Equation (11) is sub-
stituted for c in Equation (10), the expected value of
stationary yield becomes

v
webawvba







+

−
)1(2

1
1

 = ) ,  ,  , (MESY .



133

Proceedings, 5th NMFS NSAW.  1999. NOAA Tech. Memo. NMFS-F/SPO-40.

Figure 3.  Example MESY control rules (solid curves) and associated thresholds (vertical dotted lines).  In each
panel, as w increases (with c implicit), the slope of the control rule increases and the threshold moves left.
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Unlike the deterministic case where MSY was in-
dependent of the control parameter d, MESY does de-
pend on the value of d, through the latter’s dependence
on w.  The exponent in the above equation reaches a
minimum of v/2 when w=0 and a maximum of v as w
approaches infinity.

When )(~
MESY  w ,v  ,b  ,a c  =  c , the standard deviation

of stationary yield can be written

w
v

v ev
w

w
w v

w

w
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 + 1
 + 

+ 1

 + 2
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 = ) ,  ,  , (SDSY
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2

.

The term under the square root symbol reaches a
minimum of 1-e-v when w=0 and increases without limit
as w approaches infinity.  MESY (expressed as a pro-
portionate increase over MSY) and SDSY are plotted
for a=b=1 and several values of v and w in Figure 4.

In managing a fishery, suppose that any increase in
MESY were viewed as a desirable result (all other things
being equal), and that likewise any decrease in SDSY
were viewed as a desirable result (all other things being
equal).  Because both MESY and SDSY increase mono-
tonically but nonlinearly with w, it may be possible to
find an optimal value for w depending on the prefer-

ence associated with a unit increase in MESY relative
to the preference associated with a unit decrease in
SDSY.  For example, suppose that the goal was to choose
the value of the control parameter w so as to maximize
the following objective function, which uses the param-
eter z to form a linear combination of MESY and (nega-
tive) SDSY:
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The above equation is scaled so that q(v,0)=0.  The
parameter z represents the amount by which a unit in-
crease in MESY is preferred relative to a unit decrease
in SDSY.  This objective function is plotted for several
values of v and z in Figure 5.

While it is not possible to obtain a closed-form so-
lution for the value of w that maximizes q, it is possible
to derive the value of z for which a particular value of w
would be optimal, given v:
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Figure 4.  Profiles of MESY and SDSY.  In the upper panels, higher curves correspond to higher values of
variability level v.  In the lower panels, higher curves correspond to higher values of control parameter w.
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Figure 5.  Examples of objective functions used to evaluate tradeoffs between mean and standard deviation of
yield.  In each panel, higher curves correspond to higher values of v.  As z or v increases, maxima shift right.
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The above relationship is plotted for several values
of w

opt
 in Figure 6.  Note that a positive value of w is

never optimal when 8.222 ≈<z . Also, the value of w
that maximizes q can vary considerably with v or z.  For
example, w=0.260 is optimal when v=0.2 and z=4, but
increasing v to a value of 0.6 (with z held constant at 4)
more than doubles the optimal value of w (0.546).  Al-
ternatively, increasing z to a value of 6 (with v held con-
stant at 0.2) nearly triples the optimal value of w (0.756).

Stage 3:  Incorporating Parameter Uncertainty

In General

All of the above assumes that the true values of χχχχχ
and ψψψψψ are known.  When uncertainty exists regarding
the true values of these parameters, additional compli-
cations arise.  Many of these relate to the objective of
management under a precautionary approach:  Exactly
what is being maximized, and how does the answer to
this question differ between limit control rules and tar-
get control rules?  One way to address this question is to

view the distinction between limit and target control rules
as a distinction between levels of relative risk aversion
in a decision-theoretic framework.  For example, a limit
control rule might be defined by the decision-theoretic
optimum derived under a risk-neutral stance, while a
target control rule might be defined by the decision-theo-
retic optimum derived under a risk-averse stance.  A
simple way to characterize this difference is as follows:
the risk-neutral solution maximizes the expectation of
stationary yield (MESY, pronounced “mezzy”), while
the risk-averse solution maximizes the expectation of
log stationary yield (MELSY, pronounced “melzy”).
Such use of a logarithmic loss (or utility) function in
developing harvest strategies has been advocated or
analyzed by Gleit (1978), Lewis (1981, 1982),
Mendelssohn (1982), Opaluch and Bockstael (1984),
Ruppert et al. (1984, 1985), Deriso (1985), Walters
(1987), Walters and Ludwig (1987), Getz and Haight
(1989), Hightower and Lenarz (1989), Hightower
(1990), Parma (1990), Parma and Deriso (1990), and
Thompson (1992).

Maximizing the expectation of log stationary yield
is formally equivalent to maximizing the geometric mean
of stationary yield.  Just as the conditional arithmetic
mean was defined above as a function of the parameters
χχχχχ, ψψψψψ, and ωωωωω, the conditional geometric mean of the sta-
tionary distribution of yield is defined (if it exists) as

( )( )xxpxy(G
*
xy  d ) ,  ,  | ( ) | (   ln   exp = ) ,  , 0 ωψχωωψχ ∫∞ .

Figure 6.  Value of z at which a specified value of w is optimal, given v.  Beginning with the lowest curve
and moving upward, curves correspond to optimal w values of 0, 0.25, 0.50, 0.75, 1.00, 1.25, and 1.50.
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Likewise, in a manner analogous to that used to
develop the conditional MESY solution, ) ,  , ωψχ(Gy

can be rewritten as ) ,  , )(ωψχ  i y  | (cG  and then maxi-
mized with respect to c, giving the control parameter
value associated with the maximum expected log sta-
tionary yield, conditional on  χχχχχ, ψψψψψ, and ωωωωω( i )

:

0 =  |
 d

) ,  ,  |( d
),,(~

)(

)  (

MELSY i

iy

ccc

c G
ωψχ

ωψχ
= .

However, when the values of χχχχχ and ωωωωω are uncer-
tain, maximization of the mean (either arithmetic or geo-
metric) of the conditional pdf is not particularly helpful
by itself, as the solution is a function of parameters whose
values are unknown.  Rather, it is the moments of the
marginal pdf that are of interest.  For example, the arith-
metic mean of the marginal pdf is defined as
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Rewriting the above as )( )(iy |cA ω  and maximiz-
ing with respect to c gives )( )(MESY i c ω ; that is,

0 = |  
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)|( d
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)(
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iy

ccc
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ω
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The above derivation involves two operations:  in-
tegration and differentiation.  The order in which these
two are performed can make a difference (though per-
haps not always).  In the above, integration precedes
differentiation.  In other words, the arithmetic mean of
the marginal distribution of stationary yield is computed
conditionally on c, then c is chosen so as to maximize
this expectation.  An alternative approach would be to
choose the value of c that maximizes expected station-
ary yield conditional on χχχχχ, ψψψψψ, and ωωωωω( i )

, and then com-
pute the expectation of this value.  This is accomplished

by multiplying ) ,  , (~
)(MESY i c ωψχ  by ) , (, ψχψχp  and in-

tegrating over the elements of χχχχχ and ψψψψψ, giving
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The same procedure can be followed for the geo-
metric mean.  The geometric mean of the marginal pdf
is defined as
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Rewriting the above as )( )(iy |cG ω  and maximizing

with respect to c gives ; )( )(MELSY i c ω  that is,
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while multiplying ) ,  , (~
)(MELSY i c ωψχ  by ) , (, ψχψχp  and

integrating over the elements of of χχχχχ and ψ ψ ψ ψ ψ gives
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Thus, there are a number of alternative ways to pro-
ceed.  In either the MESY case or the MELSY case, at
least three solutions can be envisioned:  1) considering
uncertainty due to natural variability only, solve for the
optimum value of c as a function of the parameters χχχχχ, ψψψψψ,
ωωωωω( i )

, then evaluate that solution at the “best” estimate of
those parameters (the “solve-then-evaluate” method); 2)
considering uncertainty due to natural variability only,
solve for the optimum value of c as a function of the
parameters  χχχχχ, ψψψψψ, ωωωωω( i )

, then take the expectation of that
solution over the parameters χχχχχ and ψψψψψ (the “solve-then-
integrate” method); and 3) considering both natural vari-
ability and parameter uncertainty, solve for the optimum
value of c (the “integrate-then-solve” method).  These
three solutions are summarized in the table below:

Attitude               Solution
toward risk Solution technique notation
risk neutral solve-then-evaluate ) ,  , ( ~

)(MESY ic ωψχ
risk neutral solve-then-integrate )( )(MESY ic ω
risk neutral integrate-then-solve )( )(MESY ic ω
risk averse solve-then-evaluate  ) ,  , (~

)(MELSY ic ωψχ
risk averse solve-then-integrate )( )(MELSY ic ω
risk averse integrate-then-solve )( )(MELSY i c ω

For Example

In Stage 2, the quantity w (defined as w≡d/a) was a
constant.  To retain the interpretation of w as a constant
in Stage 3, it will prove convenient at this point to rede-
fine w≡d/A

a
 and to reparametrize the model accordingly.

Thus, wherever w appears as a parameter in a previous
equation, it can be replaced with the quantity A

a
w/a.  Use

of the redefined parameter w renders many quantities of
interest in this model proportional to A

a
.

A general solution for  c
MESY

(w)cannot be obtained,
because any particular solution will depend on the form
of the joint pdf of a, b, and v.  However, because

)( ~
MESY  w ,v  ,b  ,ac  is linear in a, ln(b), and v [Equation

(11)], the following solution for )(MESY w c  will be inde-
pendent of the form of the joint pdf of a, b, and v:

( )( ) avb A     w A  +   G    -   = w c )(ln1)(MESY     (12)
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Obtaining general solutions for MELSY is even
more difficult than in the MESY case.  For one thing,
the fact that the logarithmic control rule forces yield to
equal zero at x=exp(-c/d) means that )(  w ,c  ,v  ,b  ,aGy

does not exist except when w=0.  For purposes of illus-
tration, however, an exact solution for a quantity closely
related to c

MELSY
(w) can be obtained if a, b, and v are

assumed to be independent and if particular functional
forms are chosen for their respective pdfs.  Specifically,
let p

a
(a) follow a 3-parameter F distribution with scale

parameter d, let p
b
(b) follow a lognormal distribution,

and let p
v
(v) follow an inverse Gaussian distribution (Ap-

pendix).

For any positive random variable, the ratio of the
harmonic mean to the arithmetic mean may be viewed
as a measure of the degree of certainty surrounding the
value of that variable.  This ratio ranges from a lower
bound no less than zero, representing complete uncer-
tainty, to an upper bound no greater than unity, repre-
senting complete certainty (e.g., Mitrinovi� et al. 1993).
For the particular distributional forms assumed here, the
ratios of harmonic to arithmetic means may be expressed
in terms of the coefficient of variation (CV) as follows
(the harmonic and arithmetic means are also given as
functions of their respective distributional parameters
in the Appendix):
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Given the assumption that a follows an F distribu-
tion with scale parameter d, the quantity u≡a/(a+d) is
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Then, a quantity closely related to c
MELSY

(w) can be
written (Appendix) as
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For all practical purposes, the adjustment factors
k

a
, k

b
, and k

v
 vary directly with the ratios H

a
/A

a
, H

b
/A

b
,

and H
v
/A

v
, respectively, so that an increase in uncertainty

regarding any of the parameters results in a downward
shift in the control rule.  Examples of limit control rules
(using Equation (12)) and target control rules (using
Equation (13)) are shown in Figure 7 for four values of
w, in Figure 8 for four values of H

a
/A

a
 = H

b
/A

b
 = H

v
/A

v
,

and in Figure 9 for four values of A
v
 (because the axes

in Figures 7-9 are scaled relative to A
a
 and G

b
, the curves

are independent of these two parameters).  The upper
left panels of Figures 7-9 are all identical, giving a com-
mon point of reference against which to contrast results
associated with different parameter values.  In each of
these figures, the control rules developed under this
model are contrasted with the existing control rules for
“Tier 1” of the harvest policy established in 1996 for
Alaska groundfish (U.S. National Marine Fisheries Ser-
vice 1996).

Discussion

Harvest control rules provide a tractable and heu-
ristic means of comparing alternative fishery manage-
ment strategies.  They can be analyzed in the context of
a wide variety of models, ranging from simple deter-
ministic models with known parameter values to com-
plex stochastic models with uncertain parameter values.
Moving from the classical one-parameter control rules
(e.g., constant fishing mortality, constant escapement)
to a two-parameter control rule such as the logarithmic
form considered in the example model here can some-
times render comparisons between the former more
meaningful by framing them as special cases along a
continuum of possible strategies rather than as concep-
tually unrelated policies.  More elaborate functional
forms, in which various two-parameter control rules
might emerge as special cases, can also be imagined.
Generally, the ideal level of complexity to build into a
harvest control rule, as well as the appropriate number
of parameters to be left free therein, remain open ques-
tions.  Relative to a full optimal control solution, some
degree of optimality may be sacrificed whenever the
functional form of the control rule is constrained a priori.
However, the sacrifice may be slight.  For example, in
the deterministic Gordon-Schaefer model considered by
Clark (1976), the optimal control solution consisted of
a one-parameter constant escapement policy.  Even when
more complicated stochastic models are used, the dif-
ference between a full optimal control solution and a
fixed-form optimization can be negligible (e.g.,
Mendelssohn 1980, Horwood 1993).
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Figure 8.  Limit (solid) and target (dashed) control rules in the example model (thick) and Alaska groundfish
policy (thin).  Horizontal and vertical dotted lines depict additional reference points.

Figure 7.  Limit (solid) and target (dashed) control rules in the example model (thick) and Alaska groundfish
policy (thin).  Horizontal and vertical dotted lines depict additional reference points.
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For the most part, it has been assumed here that
optimization of the control rule is confined to a single
control parameter (c, in the case of the example model).
This is a convenient restriction, but not a necessary one.
For instance, in the Stage 2 example model considered
here, it is possible to maximize expected stationary yield
with respect to both c and d.  This results in a strategy of
the constant escapement type, confirming the conclu-
sion of Reed (1978) and others that a constant escape-
ment policy dominates the other classical one-param-
eter control rules when the objective is maximization of
long-term average yield.  However, leaving at least one
control parameter (say, d) to be fixed independently of
the optimization has previously been advocated (e.g.,
Ruppert et al. 1984) on the basis that it facilitates con-
sideration of management objectives other than yield
maximization.  For instance, in the Stage 2 example
model considered here, allowing d to be fixed indepen-
dently means that the full range of tradeoffs between
long-term average yield and the level of variability
around that average can be presented (Figure 5).  As in
previous studies (e.g., Beddington and May 1977), the
example model shows that the arithmetic mean and stan-
dard deviation of stationary yield vary together.  How-
ever, the example model here goes further than previ-
ous studies in showing that this result holds true across
a continuum of MSY control rules (i.e., as a function of
control parameter d with c set at its conditional MESY
value).

Figures 7-9 contrast the example model with the
existing control rules for “Tier 1” of the harvest policy
established in 1996 for Alaska groundfish (U.S. National
Marine Fisheries Service 1996).  The three-parameter
control rules used in the Alaska groundfish policy are,
in fact, based partly on a special case of the example
model.  Specifically, the horizontal portions of those
control rules correspond to the special cases of Equa-
tions (12) and (13) in which w=0.  When w=0, MESYc
and c

MELSY
 (or MELSYĉ ) are simply the arithmetic and har-

monic means, respectively, of the marginal distribution
of a.  Interestingly, this result holds regardless of the
functional form of the joint distribution of a, b, and s.
In contrast, the general (w$0) form of Equation (13)
depends on several assumptions regarding the joint dis-
tribution of a, b, and s.

As Figures 7-9 show, the logarithmic control rule
used in the example model can be implemented in a
manner that satisfies the requirements of a precaution-
ary approach specified by the U.S. Department of Com-
merce (1998):  1) target harvest rates are less than limit
harvest rates, 2) harvest rates at low stock sizes are less
than harvest rates at high stock sizes, and 3) the buffer
between limit and target harvest rates widens as uncer-
tainty regarding a stock’s size or productive capacity
increases.  The use of a logarithmic control rule (with
w>0) automatically satisfies the second requirement,
whereas satisfaction of the first and third requirements

Figure 9.  Limit (solid) and target (dashed) control rules in the example model (thick) and Alaska groundfish
policy (thin).  Horizontal and vertical dotted lines depict additional reference points.
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is achieved by basing the limit control rule on a risk-
neutral optimization and the target control rule on a risk-
averse optimization.  The Alaska groundfish policy also
satisfies these three requirements, with the exception that
the size of the buffer increases directly with uncertainty
regarding productive capacity only (not stock size).

It may also be noted that the limit control rule shown
for the example model in Figures 7-9 qualifies as an
MSY control rule, whereas the limit control rule used in
the Alaska groundfish policy does not.  The failure of
the limit control rule used in the Alaska groundfish policy
to qualify as an MSY control rule is due to the fact that
the presence of the descending limb was not considered
in the process of setting the height of the horizontal limb.
That is, in setting the height of the horizontal limb, the
optimization was conditional on the assumption that a
constant fishing mortality policy would apply, whereas
in fact such a policy applies only when the stock is above
its MSY level.

In Stages 1 and 2, it was assumed that estimates of
the biological parameters a, b, and s (or v) are obtain-
able.  In Stage 3, it was assumed that pdfs of these pa-
rameters are obtainable.  In practice, obtaining these
estimates or distributions will typically be a non-trivial
exercise.  However, the functional form of the example
model described here is particularly amenable to this
task.  Thompson (1998) showed how a log transforma-
tion of this model satisfies the assumptions of the Kalman
filter (e.g., Harvey 1990) exactly, meaning that either
maximum likelihood or Bayesian methods can be used
in a straightforward manner to obtain parameter esti-
mates or posterior distributions of parameters (if maxi-
mum likelihood is used, distributions could be obtained
by appealing to the asymptotic normality of the param-
eter estimates).  The model is sufficiently simple, in fact,
that the maximum likelihood estimate of the determin-
istic carrying capacity (=be) can be written in closed
form.

The subject of rebuilding depleted stocks was con-
sidered for the Stage 1 and Stage 2 cases, but not for the
Stage 3 case.  A Stage 3 treatment should not prove too
problematic, however, insofar as computing the geomet-
ric or arithmetic mean of Equation (6) for the case where
the values of a and b are uncertain does not appear to
pose any special difficulty (note that the natural vari-
ability parameter s does not enter into Equation (6)).
Despite the omission of a Stage 3 treatment of rebuild-
ing, the results obtained under Stages 1 and 2 in the ex-
ample model offer some interesting insights on their own.
For example, suppose that the goal of a rebuilding pro-
gram is to return a depleted stock to its deterministic
MSY stock size b.  In this case, the Stage 1 example
model indicates that the threshold stock size prescribed
by any MSY control rule will also be equal to b regard-

less of the allowable time frame for rebuilding.  Thus,
under Stage 1 conditions, anytime a stock falls below
its deterministic MSY stock size, it will be impossible
to rebuild to the deterministic MSY level in finite time
while fishing according to any MSY control rule.  In the
Stage 2 example model, however, the conclusions are
different.  Specifically, if the geometric mean of the tran-
sition distribution is used to define the threshold stock
size, the threshold stock size prescribed by any MESY
control rule with d>0 and s>0 will always be less than b
regardless of the allowable time frame for rebuilding.
Thus, under Stage 2 conditions, it is possible for a stock
to fall below its deterministic MSY stock size to some
extent and still rebuild to the deterministic MSY level
within an allowable time frame while fishing according
to a given MESY control rule.  The difference in con-
clusions reached under Stages 1 and 2 in this regard is
due to the fact that a Stage 1 MSY control rule evalu-
ated at the point x=b always gives a harvest rate equal
to a, whereas a Stage 2 MESY control rule evaluated at
the same point always gives a harvest rate less than a so
long as d>0 and s>0.  However, under a MESY control
rule with d=0 (i.e., a constant fishing mortality policy),
even the Stage 2 example model prescribes a threshold
stock size equal to b.

Another aspect of rebuilding that was not addressed
here is the question of whether rebuilding should be
viewed primarily in terms of stock size x or in terms of
rebuilding time t.  In other words, is it more important
to consider the probability that the stock size will ex-
ceed x

reb
 at time t

reb
, or the probability that the time needed

for the stock size to exceed x
reb

 will be greater than t
reb

?
The two approaches are not equivalent (e.g., Dennis et
al. 1991).

In conclusion, some caveats are probably appropri-
ate.  First, the logarithmic control rule used in the ex-
ample model exhibits some features that may require
getting used to.  For example, one must either interpret
the control rule as exhibiting a discontinuity at the point
where it crosses the x axis (making the mathematics more
complicated), or be prepared to accept (as an approxi-
mation, at least) the idea of a small negative “yield” at
sufficiently low stock sizes.  Also, the fact that the con-
trol rule has no finite upper bound may not be appealing
to some.  Second, the results pertaining to the example
model may not extend to other models.  For instance, a
discrete rather than a continuous representation of stock
dynamics, other functional forms for Equation (1), or
other interpretations of the stochastic differential (Equa-
tion (7); for example, Ricciardi 1977) could alter the
conclusions either quantitatively or qualitatively.  Fi-
nally, the derivation of the MELSY solution presented
in Equation (13) requires some strong assumptions.  For
instance, the assumption that the parameters a and v are
independent is problematic unless a and s happen to vary
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together in a particular manner.  Also, the form assumed
for the pdf of a implies that, for given values of H

a
 and

A
a
, the coefficient of variation changes with the choice

of w, which is probably an undesirable property.
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Appendix:  Derivation of a MELSY Solution

As discussed in the main text, one type of MELSY
solution is achieved by maximizing the geometric mean
of the marginal distribution of stationary yield, which
can be written as
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Unfortunately, several difficulties arise.  For ex-
ample, if the joint distribution of the parameters
p

a,b,s
(a,b,s) is left completely general, it is not possible

to obtain an analytic solution except for the special case
in which d=0.  The following simplifying assumptions
will therefore be made:

1) The model can be reparametrized by substitut-
ing 2av for s wherever the latter occurs.

2) The parameters a, b, and v are independent, so
that p

a,b,v
(a,b,v)=p

a
(a)p

b
(b)p

v
(v).

The above assumptions imply that the solution can
be written as
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Next, there is a problem in that the control rule h(x)
= c + d ln(x) implies that yield falls to zero at x=exp(-c/
d), at which point the logarithm no longer exists.  There-
fore, a compromise will be made by defining, tentatively,
a “quasi-geometric mean” that involves taking the loga-
rithm after integrating with respect to x (rather than be-
fore):
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Next, there is a problem in that the form of the con-
ditional arithmetic mean implies that yield falls to zero
at b=exp(-c/d-1-v), at which point the logarithm no
longer exists.  Therefore, another compromise will be
made by redefining the “quasi-geometric mean” so that
the exponentiation occurs immediately after integrating

with respect to a (rather than waiting until all integra-
tions have been completed):
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Finally, it will be assumed that p
a
(a), p

b
(b), p

v
(v)

have particular functional forms.  Specifically, the fol-
lowing will be assumed:

1) The uncertainty surrounding a can be described
by an F distribution with scale parameter d, meaning
that the uncertainty surrounding the variable u=a/(a+d)
can be described by a beta distribution, that is,
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where a
a
 and b

a
 are parameters.  The harmonic and arith-

metic means of a are given by
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respectively.  The ratio of H
a
 to A

a
 (i.e., the degree of

certainty regarding the true value of a) is thus indepen-
dent of d.  The arithmetic mean of u is dependent on
both the scaled control parameter w and the degree of
uncertainty regarding the true value of a, as shown be-
low:
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2) The uncertainty surrounding b can be described
by a lognormal distribution, that is,
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where µ
b
 and σ

b
 are parameters.  The harmonic, geo-

metric, and arithmetic means of b are given by
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3) The uncertainty surrounding v can be described
by an inverse Gaussian distribution, that is,
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where η
v
 and θ

v
 are parameters.  The harmonic and arith-

metic means of v are given by
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Given the above, )(ˆ d  ,cGy  can be written, up to a
constant of proportionality, as follows:
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Differentiating the above with respect to c, setting
the resulting expression equal to zero, solving for c, and
substituting wA

a
 for d gives
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